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Summary of rules for uncertainty propagation

This document is meant to be a concise guide
on the propagation of uncertainties in calcula-
tions – an important skill for your PHY 151 Prac-
ticals and beyond. For further information, stu-
dents are referred to the Uncertainty modules of
the Practicals website, or to a textbook on mea-
surements and uncertainties1.

1 Generalities
Throughout this document, uncertainties are
combined in quadrature. This seemingly obscure
prescription is the result of a proper, probabilis-
tic treatment of uncertainties: remember that the
uncertainty on a measurement is the estimated
standard deviation of the underlying probabil-
ity distribution, taken to be a Gaussian. The re-
sult of a calculation implicating such a measured
value should also be interpreted as a Gaussian-
distributed value; it turns out its standard de-
viation is obtained via combination in quadra-
ture. Importantly, this fact as well as the formu-
las sated hereafter are valid provided the differ-
ent quantities are independant, probabilistically
speaking.

We usually report uncertainties with one sig-
nificant digit. The number of significant digits in
the measurand is set by the decimal place of the
uncertainty; for instance, 13.36±0.81 is reported
as 13.4 ± 0.8. This rule is imperfect, however: if
rounding the uncertainty to one significant digit
would change its value by a large percentage, it
may be preferable to leave two significant dig-
its. For example, 13.345±0.149 could be reported
13.35±0.15, as opposed to 13.4±0.1. In all cases,
it is best to not round off values until the very end
of a calculation – this could be achieved by stor-
ing them in your calculator’s memory.

Throughout this document, the uncertainty
on a quantity x is denoted by ux , with ux > 0.

2 Addition and subtraction rule
If c is the sum or difference of a and b, that is to
say

c = a ±b, (1)

then the uncertainty uc on c is given by

uc
2 = ua

2 +ub
2. (2)

This rule can be iterated to arrive at the fol-
lowing result for a string of additions and/or sub-
tractions:

c = a1 +a2 +·· ·−b1 −b2 −·· · (3)

uc
2 = ua1

2 +ua2
2 +·· ·+ub1

2 +ub2
2 +·· · . (4)

3 Multiplication and division rule
If c is the product or the quotient of a with b, that
is to say

c = ab (5a)

or
c = a

b
, (5b)

then the squared relative uncertainty2 of c is
given by the relative uncertainties of a and b
added in quadrature:(uc

c

)2
=

(ua

a

)2
+

(ub

b

)2
. (6)

Once again, the rule is easily iterated in the
case of repeated multiplication and division:

c = a1a2 . . .

b1b2 . . .
(7)

(uc

c

)2
=

(
ua1

a1

)2

+
(

ua2

a2

)2

+·· ·

+
(

ub1

b1

)2

+
(

ub2

b2

)2

+·· · .

(8)

4 General case: the derivative rule

4.1 Functions of a single variable

The derivative rule provides a way to propagate
uncertainty in an arbitrary function.

Let y = f (x). Then, the uncertainty on y is

uy =
∣∣∣∣d f

dx

∣∣∣∣ux . (9)

1For instance, Measurements and their Uncertainties: A Practical Guide to Modern Error Analysis by Ifan Hughes and
Thomas Hase (2010).

2We call relative uncertainty the ratio of the uncertainty with the measurand, i.e. ux /x. In contrast, the quantity ux is
sometimes called the absolute uncertainty for clarity.
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This rule has a natural, intuitive interpretation:
the uncertainty interval on the y axis is found by
simply scaling that on the x axis by the slope of f
near x (presuming the linear approximation of f
near x is good on that uncertainty interval).

4.2 Functions of multiple variables

Let y = f (x1, . . . , xn), where n is a natural number.
Then,

uy
2 =

(
∂ f

∂x1

)2

ux1
2 +·· ·+

(
∂ f

∂x2

)2

uxn
2. (10)

It is easy to show that the rules from sections 2
and 3 are special cases of this one.

5 Examples

5.1 Addition and subtraction

Suppose we seek the vertical displacement of a
projectile fired straight up, from its point of de-
parture to its maximum height. The ball was put
in motion at a height of yi = (14.2 ± 0.5)cm. Its
highest altitude, measured in flight (with less pre-
cision), was yf = (43±2)cm. Then,

h = yf − yi

= 43cm−14.2cm

= 28.8cm.

(11)

The uncertaity on h is given by

uh =
√

(0.5cm)2 + (2cm)2

=
√

4.25cm2

= 2.061552813cm

(12)

Hence, following the rounding rules, we would
report the result as

h = (14±2)cm. (13)

This example illustrates a quality of addition
in quadrature: the largest uncertainties are made
even more dominant, which, in conjunction with
the rounding rules, means that smaller uncer-
tainties can often be ignored. Such cases should
become recognizable with practice.

5.2 Multiplication and division

Continuing with the previous situation, suppose
we now want to compute the work done on the
projectile, whose mass is m = (250± 1)g, by the
force of gravity. This is given by

W =−mg h

=−(0.250kg)(9.81N/kg)(0.288m)

= 0.70632J.

(14)

Neglecting any uncertainy in g , uW is given by

uW =W

√(um

m

)2
+

(uh

h

)2

= 0.70632J

√(
1g

250g

)2

+ 4.25cm2

(28.8cm)2

= 0.70632J
√

1.6×10−5 +5.1239×10−3

= 0.70632J×0.0716933682

= 0.05063845982J

(15)

Note that in both equations 14 and 15, the un-
rounded values for h and uh were used, and all in-
termediate values were stored in calculator mem-
ory. Hence, we find that

W = (0.71±0.05)J. (16)

In this case, we could have noticed from the
start that the relative uncertainty on h is far
greater than that on m, so the latter could have
safely been ignored without affecting the final
answer.

5.3 Functions of a single variable

Suppose y = sinθ, where θ was measured to be
(34.2±0.5)◦. For y , we find

y = sin(34.2◦)

= 0.562083378.
(17)

According to equation 9, the uncertainty on y is
given by

uy =
∣∣∣∣ d

dθ
(sinθ)

∣∣∣∣uθ

= |cosθ|uθ.
(18)

This example allows us to make a crucial
point on uncertainties and trigonometric func-
tions: since calculus is done in radians, angles
must be converted to radians in the computa-
tion of uncertainties. Hence, via the conversion
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180◦ = πrad, we find uθ = 8.72664626×10−3 rad,
and therefore

uy =
∣∣cos34.2◦∣∣8.72664626×10−3 rad

= 0.8270805743×8.72664626×10−3 rad

= 0.8270805743×8.72664626×10−3 rad

= 7.2176396×10−3.

(19)

Note that since angles expressed in radians are
technically dimensionless, we freely dropped the
‘rad’ in the last step. The final answer is reported
as

y = 0.562±0.007. (20)

5.4 Functions of multiple variables

Suppose we seek to calculate the number of par-
ticles which have not yet undergone some ra-
dioactive decay at time t = (10.0±0.1)min, given
by the formula

n = n0e−t/τ. (21)

The initial number of particles is somehow
known to be n0 = (3.81 ± 0.05) × 1020, and the
time constant, τ= (31.2±0.1)min. To use the rule
of equation 10, we must evaluate the following
derivatives3:

∂n

∂n0
= e−t/τ = n

n0
, (22a)

∂n

∂t
=−n0

τ
e−t/τ =−n

τ
, (22b)

∂n

∂τ
= t

τ2
n0e−t/τ = t

τ2
n. (22c)

Hence, the uncertainty on n is conveniently ex-
pressed as

un =
√(

n

n0

)2

un0
2 +

(n

τ

)2
ut

2 +
(

nt

τ2

)2

uτ2

= |n|
√(

un0

n0

)2

+
(ut

τ

)2
+

(
uτt

τ2

)2

.

(23)

Explicit substitution of numerical values is
straightforward, and is left as an exercise for the
reader.

6 Additional remarks
For completeness, let us note that some phys-
ical quantities don’t have uncertainties associ-
ated to them. This is the case for defined con-
stants (such as the speed of light in a vacuum
and the permeability of free space), as well as –
in principle – quantities that can only take on in-
teger values (like the number of β particles emit-
ted from a radioactive source). The example of
subsection 5.4, however, illustrates that the latter
point is moot when dealing with macroscoping
numbers of particles, in which case experiments
cannot resolve their discrete number.

3For convenience, we re-express the derivatives in terms of the quantity n, which will have been evaluated according to
equation 21 beforehand.
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