Summary of rules for uncertainty propagation

This document is meant to be a concise guide on the propagation of uncertainties in calculations - an important skill for your PHY 151 Practicals and beyond. For further information, students are referred to the Uncertainty modules of the Practicals website, or to a textbook on measurements and uncertainties ${ }^{1}$,

1 Generalities

Throughout this document, uncertainties are combined in quadrature. This seemingly obscure prescription is the result of a proper, probabilistic treatment of uncertainties: remember that the uncertainty on a measurement is the estimated standard deviation of the underlying probability distribution, taken to be a Gaussian. The result of a calculation implicating such a measured value should also be interpreted as a Gaussiandistributed value; it turns out its standard deviation is obtained via combination in quadrature. Importantly, this fact as well as the formulas sated hereafter are valid provided the different quantities are independant, probabilistically speaking.

We usually report uncertainties with one significant digit. The number of significant digits in the measurand is set by the decimal place of the uncertainty; for instance, 13.36 ± 0.81 is reported as 13.4 ± 0.8. This rule is imperfect, however: if rounding the uncertainty to one significant digit would change its value by a large percentage, it may be preferable to leave two significant digits. For example, 13.345 ± 0.149 could be reported 13.35 ± 0.15, as opposed to 13.4 ± 0.1. In all cases, it is best to not round off values until the very end of a calculation - this could be achieved by storing them in your calculator's memory.

Throughout this document, the uncertainty on a quantity x is denoted by u_{x}, with $u_{x}>0$.

2 Addition and subtraction rule

If c is the sum or difference of a and b, that is to say

$$
\begin{equation*}
c=a \pm b \tag{1}
\end{equation*}
$$

then the uncertainty u_{c} on c is given by

$$
\begin{equation*}
u_{c}{ }^{2}=u_{a}{ }^{2}+u_{b}{ }^{2} . \tag{2}
\end{equation*}
$$

This rule can be iterated to arrive at the following result for a string of additions and/or subtractions:

$$
\begin{gather*}
c=a_{1}+a_{2}+\cdots-b_{1}-b_{2}-\cdots \tag{3}\\
u_{c}{ }^{2}=u_{a_{1}}{ }^{2}+u_{a_{2}}{ }^{2}+\cdots+u_{b_{1}}{ }^{2}+u_{b_{2}}{ }^{2}+\cdots . \tag{4}
\end{gather*}
$$

3 Multiplication and division rule

If c is the product or the quotient of a with b, that is to say

$$
\begin{equation*}
c=a b \tag{5a}
\end{equation*}
$$

or

$$
\begin{equation*}
c=\frac{a}{b}, \tag{5b}
\end{equation*}
$$

then the squared relative uncertainty ${ }^{2}$ of c is given by the relative uncertainties of a and b added in quadrature:

$$
\begin{equation*}
\left(\frac{u_{c}}{c}\right)^{2}=\left(\frac{u_{a}}{a}\right)^{2}+\left(\frac{u_{b}}{b}\right)^{2} . \tag{6}
\end{equation*}
$$

Once again, the rule is easily iterated in the case of repeated multiplication and division:

$$
\begin{gather*}
c=\frac{a_{1} a_{2} \ldots}{b_{1} b_{2} \ldots} \tag{7}\\
\left(\frac{u_{c}}{c}\right)^{2}=\left(\frac{u_{a_{1}}}{a_{1}}\right)^{2}+\left(\frac{u_{a_{2}}}{a_{2}}\right)^{2}+\cdots \\
+\left(\frac{u_{b_{1}}}{b_{1}}\right)^{2}+\left(\frac{u_{b_{2}}}{b_{2}}\right)^{2}+\cdots \tag{8}
\end{gather*}
$$

4 General case: the derivative rule

4.1 Functions of a single variable

The derivative rule provides a way to propagate uncertainty in an arbitrary function.

Let $y=f(x)$. Then, the uncertainty on y is

$$
\begin{equation*}
u_{y}=\left|\frac{\mathrm{d} f}{\mathrm{~d} x}\right| u_{x} . \tag{9}
\end{equation*}
$$

[^0]This rule has a natural, intuitive interpretation: the uncertainty interval on the y axis is found by simply scaling that on the x axis by the slope of f near x (presuming the linear approximation of f near x is good on that uncertainty interval).

4.2 Functions of multiple variables

Let $y=f\left(x_{1}, \ldots, x_{n}\right)$, where n is a natural number. Then,

$$
\begin{equation*}
u_{y}^{2}=\left(\frac{\partial f}{\partial x_{1}}\right)^{2} u_{x_{1}}{ }^{2}+\cdots+\left(\frac{\partial f}{\partial x_{2}}\right)^{2} u_{x_{n}}{ }^{2} \tag{10}
\end{equation*}
$$

It is easy to show that the rules from sections 2 and 3 are special cases of this one.

5 Examples

5.1 Addition and subtraction

Suppose we seek the vertical displacement of a projectile fired straight up, from its point of departure to its maximum height. The ball was put in motion at a height of $y_{i}=(14.2 \pm 0.5) \mathrm{cm}$. Its highest altitude, measured in flight (with less precision), was $y_{\mathrm{f}}=(43 \pm 2) \mathrm{cm}$. Then,

$$
\begin{align*}
h & =y_{\mathrm{f}}-y_{\mathrm{i}} \\
& =43 \mathrm{~cm}-14.2 \mathrm{~cm} \tag{11}\\
& =28.8 \mathrm{~cm} .
\end{align*}
$$

The uncertaity on h is given by

$$
\begin{align*}
u_{h} & =\sqrt{(0.5 \mathrm{~cm})^{2}+(2 \mathrm{~cm})^{2}} \\
& =\sqrt{4.25 \mathrm{~cm}^{2}} \tag{12}\\
& =2.061552813 \mathrm{~cm}
\end{align*}
$$

Hence, following the rounding rules, we would report the result as

$$
\begin{equation*}
h=(14 \pm 2) \mathrm{cm} . \tag{13}
\end{equation*}
$$

This example illustrates a quality of addition in quadrature: the largest uncertainties are made even more dominant, which, in conjunction with the rounding rules, means that smaller uncertainties can often be ignored. Such cases should become recognizable with practice.

5.2 Multiplication and division

Continuing with the previous situation, suppose we now want to compute the work done on the projectile, whose mass is $m=(250 \pm 1) \mathrm{g}$, by the force of gravity. This is given by

$$
\begin{align*}
W & =-m g h \\
& =-(0.250 \mathrm{~kg})(9.81 \mathrm{~N} / \mathrm{kg})(0.288 \mathrm{~m}) \tag{14}\\
& =0.70632 \mathrm{~J} .
\end{align*}
$$

Neglecting any uncertainy in g, u_{W} is given by

$$
\begin{align*}
u_{W} & =W \sqrt{\left(\frac{u_{m}}{m}\right)^{2}+\left(\frac{u_{h}}{h}\right)^{2}} \\
& =0.70632 \mathrm{~J} \sqrt{\left(\frac{1 \mathrm{~g}}{250 \mathrm{~g}}\right)^{2}+\frac{4.25 \mathrm{~cm}^{2}}{(28.8 \mathrm{~cm})^{2}}} \tag{15}\\
& =0.70632 \mathrm{~J} \sqrt{1.6 \times 10^{-5}+5.1239 \times 10^{-3}} \\
& =0.70632 \mathrm{~J} \times 0.0716933682 \\
& =0.05063845982 \mathrm{~J}
\end{align*}
$$

Note that in both equations 14 and 15, the unrounded values for h and u_{h} were used, and all intermediate values were stored in calculator memory. Hence, we find that

$$
\begin{equation*}
W=(0.71 \pm 0.05) \mathrm{J} . \tag{16}
\end{equation*}
$$

In this case, we could have noticed from the start that the relative uncertainty on h is far greater than that on m, so the latter could have safely been ignored without affecting the final answer.

5.3 Functions of a single variable

Suppose $y=\sin \theta$, where θ was measured to be $(34.2 \pm 0.5)^{\circ}$. For y, we find

$$
\begin{align*}
y & =\sin \left(34.2^{\circ}\right) \\
& =0.562083378 . \tag{17}
\end{align*}
$$

According to equation 9 , the uncertainty on y is given by

$$
\begin{align*}
u_{y} & =\left|\frac{\mathrm{d}}{\mathrm{~d} \theta}(\sin \theta)\right| u_{\theta} \tag{18}\\
& =|\cos \theta| u_{\theta} .
\end{align*}
$$

This example allows us to make a crucial point on uncertainties and trigonometric functions: since calculus is done in radians, angles must be converted to radians in the computation of uncertainties. Hence, via the conversion
$180^{\circ}=\pi \mathrm{rad}$, we find $u_{\theta}=8.72664626 \times 10^{-3} \mathrm{rad}$, and therefore

$$
\begin{align*}
u_{y} & =\left|\cos 34.2^{\circ}\right| 8.72664626 \times 10^{-3} \mathrm{rad} \\
& =0.8270805743 \times 8.72664626 \times 10^{-3} \mathrm{rad} \\
& =0.8270805743 \times 8.72664626 \times 10^{-3} \mathrm{rad} \tag{19}\\
& =7.2176396 \times 10^{-3} .
\end{align*}
$$

Note that since angles expressed in radians are technically dimensionless, we freely dropped the 'rad' in the last step. The final answer is reported as

$$
\begin{equation*}
y=0.562 \pm 0.007 \tag{20}
\end{equation*}
$$

5.4 Functions of multiple variables

Suppose we seek to calculate the number of particles which have not yet undergone some radioactive decay at time $t=(10.0 \pm 0.1) \mathrm{min}$, given by the formula

$$
\begin{equation*}
n=n_{0} \mathrm{e}^{-t / \tau} \tag{21}
\end{equation*}
$$

The initial number of particles is somehow known to be $n_{0}=(3.81 \pm 0.05) \times 10^{20}$, and the time constant, $\tau=(31.2 \pm 0.1) \mathrm{min}$. To use the rule of equation 10 , we must evaluate the following derivatives ${ }^{3}$?

$$
\begin{equation*}
\frac{\partial n}{\partial n_{0}}=\mathrm{e}^{-t / \tau}=\frac{n}{n_{0}} \tag{22a}
\end{equation*}
$$

$$
\begin{align*}
\frac{\partial n}{\partial t} & =-\frac{n_{0}}{\tau} \mathrm{e}^{-t / \tau}=-\frac{n}{\tau} \tag{22b}\\
\frac{\partial n}{\partial \tau} & =\frac{t}{\tau^{2}} n_{0} \mathrm{e}^{-t / \tau}=\frac{t}{\tau^{2}} n \tag{22c}
\end{align*}
$$

Hence, the uncertainty on n is conveniently expressed as

$$
\begin{align*}
u_{n} & =\sqrt{\left(\frac{n}{n_{0}}\right)^{2} u_{n_{0}}^{2}+\left(\frac{n}{\tau}\right)^{2} u_{t}^{2}+\left(\frac{n t}{\tau^{2}}\right)^{2} u_{\tau}^{2}} \\
& =|n| \sqrt{\left(\frac{u_{n_{0}}}{n_{0}}\right)^{2}+\left(\frac{u_{t}}{\tau}\right)^{2}+\left(\frac{u_{\tau} t}{\tau^{2}}\right)^{2}} \tag{23}
\end{align*}
$$

Explicit substitution of numerical values is straightforward, and is left as an exercise for the reader.

6 Additional remarks

For completeness, let us note that some physical quantities don't have uncertainties associated to them. This is the case for defined constants (such as the speed of light in a vacuum and the permeability of free space), as well as in principle - quantities that can only take on integer values (like the number of β particles emitted from a radioactive source). The example of subsection 5.4, however, illustrates that the latter point is moot when dealing with macroscoping numbers of particles, in which case experiments cannot resolve their discrete number.

[^1]
[^0]: ${ }^{1}$ For instance, Measurements and their Uncertainties: A Practical Guide to Modern Error Analysis by Ifan Hughes and Thomas Hase (2010).
 ${ }^{2}$ We call relative uncertainty the ratio of the uncertainty with the measurand, i.e. u_{x} / x. In contrast, the quantity u_{x} is sometimes called the absolute uncertainty for clarity.

[^1]: ${ }^{3}$ For convenience, we re-express the derivatives in terms of the quantity n, which will have been evaluated according to equation 21 beforehand.

